Representation of Prime Powers by Binary Quadratic Forms
نویسندگان
چکیده
In this article, we consider the representation of prime powers by binary quadratic forms of discriminant D = −2q1 . . . qt where the product of primes q1 . . . qt ≡ 3 (mod 4), for instance if it is of special RichaudDegert type n2 ± 2 for odd n’s, n2 − 1 for even n’s. We consider all the ambiguous classes and Q( √|D0|), where D0 is the fundamental discriminant and we obtain a general criterion for representation of prime powers by using the residue character of the fundamental unit. Mathematics Subject Classification: 11Y40, 11E16, 11R29
منابع مشابه
Five peculiar theorems on simultaneous representation of primes by quadratic forms
It is a theorem of Kaplansky that a prime p ≡ 1 (mod 16) is representable by both or none of x2 + 32y2 and x2 + 64y2, whereas a prime p ≡ 9 (mod 16) is representable by exactly one of these binary quadratic forms. In this paper five similar theorems are proved. As an example, one theorem states that a prime p ≡ 1 (mod 20) is representable by both or none of x2 + 20y2 and x2 + 100y2, whereas a p...
متن کاملApproximating the Distributions of Singular Quadratic Expressions and their Ratios
Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...
متن کاملClass Numbers of Real Quadratic Number Fields by Ezra Brown
This article is a study of congruence conditions, modulo powers of two, on class number of real quadratic number fields Q(vu), for which d has at most thtee distinct prime divisors. Techniques used are those associated with Gaussian composition of binary quadratic forms. 1. Let hid) denote the class number of the quadratic field Qi\ß) and let h id) denote the number of classes of primitive bina...
متن کاملAsymptotic formulas for partial sums of class numbers of indefinite binary quadratic forms
Sarnak obtained the asymptotic formula of the sum of the class numbers of indefinite binary quadratic forms from the prime geodesic theorem for the modular group. In the present paper, we show several asymptotic formulas of partial sums of the class numbers by using the prime geodesic theorems for the congruence subgroups of the modular group.
متن کاملPrime sieves using binary quadratic forms
We introduce an algorithm that computes the prime numbers up to N using O(N/log logN) additions and N1/2+o(1) bits of memory. The algorithm enumerates representations of integers by certain binary quadratic forms. We present implementation results for this algorithm and one of the best previous algorithms.
متن کامل